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Abstract

We show that any equation from the Davey—Stewartson hierarchy induces an infinite family of
geometrically different deformations of tori iR* preserving the Willmore functional. We expose
a derivation of the Weierstrass representation for surfaces in the four-space, which is not unique in
difference from the case of surfaces in the three-space. This non-uniqueness implies that the spectral
curve of a torus iR* is not uniquely defined as a complex curve formed by the Floquet multipliers.
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1. Introduction

The Weierstrass representation for surfaceB3r8,13] was generalized for surfaces
in R* in [12] (see alsd4]). This paper uses the quaternion language and the explicit for-
mulas for such a representation were written by Konopelchenk8]ifor constructing
surfaces which admit soliton deformation governed by the Davey—Stewartson equations.

* Tel.: +7 3833333496; fax: +7 3833332895.
E-mail address: taimanov@math.nsc.ru.

0393-0440/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2005.06.013



1236 LA. Taimanov / Journal of Geometry and Physics 56 (2006) 1235-1256

This generalizes his results froj8] where he introduced the formulas for inducing sur-
faces in the three-space which involve a Dirac type equations and defined for such surfaces
a deformation governed by the modified Novikov—Veselov (MNV) equations.

It was shown irf13] that the formulas for inducing surfacesRA [8] describe all surfaces
and that the modified Novikov—\Veselov equation deforms tori into tori preserving the Will-
more functional which naturally arises and plays an important role in this representation.
The spectral curve of the corresponding Dirac operator is invariant under this deformation.
The global Weierstrass representation at least for real analytic surfaces could be obtained
by an analytic continuation from a local representation. Thus, a moduli space of immersed
tori is embedded into the phase space of an integrable system with the Willmore functional
and, moreover, the spectral curve as conservation quantities.

Looking forward to understand the spectral curves for tafifwe consider in this paper
the analogous problems for surfacesiifrand show that this case is very different from
the three-dimensional case, in particular, by the following features which were overlooked
until recently:

e for tori in R* every equation from the Davey—Stewartson (DS) hierarchy describes not
one but infinitely many geometrically different soliton deformations;

e the multipliers on the spectral curve for a torusRfi are not uniquely defined and
different complex curves ift? (the spectral curves immersed via the multipliers) are
invariants of different DS deformations.

The reason for that is quite clear and consists basically in the non-uniqueness of a
Weierstrass representation.

A surface inR2 is constructed in terms of one vector functigigspinor) which is a lift of
the Gauss mapping into non-vanishing spinors. Such a lift is defined up to a sign by fixing
a conformal parameter on the surface. This functiosatisfies a Dirac equation.

A surface inR* is constructed in terms of two vector functiostsand ¢ which form
again a lift of the Gauss mapping. However, in this case by fixing a conformal parameter
one defines a lift only up to a gauge transformation giverebyheref is any smooth
function. Moreover not every lift satisfies the Dirac equations and the lifts meeting these
equations are defined up to gauge transformatibmgeren is a any holomorphic function.

In particular, given a Weierstrass representation of a susaceR* and a domairV ¢
X we can replace arepresentation of the domain by gauge-equivalent using a transformation
¢" whereh is a holomorphic function ofi¥ which is not analytically continued onto the
surface. Thus, we obtain a representation of a domain, which is not continued (i.e. expanded
to3a representation of a surface). This also makes a difference with the case of surfaces in
R=.

Another important point is that the DS equations contain the additional potentials, which
are defined by resolving the constraint equations. Such resolutions are not unique and we
have to choose the potentials carefully to make the DS deformations geometric: for some
special choices of the additional potentials the corresponding DS deformations map tori
into tori preserving the Willmore functional. However, in general this is not the case and
we show how to achieve that in Sectién
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2. Explicit formulas for a representation and soliton deformations
Let us recall the explicit formulas for inducing a surface and its soliton deformation via
the Davey—Stewartson equation.

The following proposition is derived by straightforward computations.

Proposition 1 ([9]). Let vector functions ¥ and ¢ be defined in a simply connected domain
W c C (with a complex parameter 7) and meet the Dirac equations

> 0 2\ (U0 -y 0 ) U o
-5 0 0 U’ “\-5 0 0 Uj’
Then the 1-forms
m = fidz+ fidz, k=1,2 34,
with
i _ — 1_ - 1_ —
fi= 5(9021#2 + p191), fo= é(wzlﬁz — 1Y11), fa= §(¢2w1 + 1972),

fa= 5@y - 1i2) @

are closed and the formulas
XK= xk(0)+/nk, k=1,234 2)

define a surface in R* (here the integral is taken over any path in W and by the Stokes
theorem does not depend on a choice of path).
The induced metric equals

& dz dz = ([y112 + 1W21%) (1) + @2l?) dz dz” ®3)

and the norm of the mean curvature vector H = %;; meets the equality

_ H[e"

U
U 5

(4)

For U = U and ¢ = +¢ these formulas reduce to the Weierstrass representation for
surfaces iR,

The existence of alocal representation of any surfaBé toy these formulas is not proved
in [9] although it was indicated ifL2] that the Weierstrass representation for surfaces in
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RR3 is generalized for surfaces Rf* and involves in this case two vector functiopsinde
and a complex valued potentiél
We expose such a derivation in the next section revealing some features not taking place
in the three-dimensional case. Remark that for Lagrangean surfaegis representation
was discovered in other terms byeléin and Romofi7].
Let

(52

Let us consider deformations of this operator which take the form of Manakows B-
triple:

Li+[L,A)]—B,L=0 (5)

or
[L,0; — An] + B,L = 0.
Notice that ifL meety(5), then the solution of the equation
Ly =0
is evolved as follows:
Vi = Ay
The following two propositions are proved by straightforward computations.
Proposition 2. For
( —8%—v1 qd— qz>
Az = = :
—pd+p; 9+
P+ 8+ (v1+ v2) ~(p+ )9+ gz — 2pz
B ((p+q)8 —pe+2q.  —(@P+0)—(n+ v2)> ’

where
vi7 = —2(pq);, v2; = —2(pq)z,

Eq. (5) takes the form

Pt = Pz + pzz + (v1 +v2)p, Gt = —qzz — qzz — (v1 + v2)q. (6)
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Proposition 3. For

3 3 32 - 3
d +§v13—3w1 q0° — 470 + gz + Sv2q
Paz — pz0+ pzz + EUlP 83 + évza — 3w»

b b
Bs— 11 b12 ’
bo1 b2
where
3 —
b1 = —bpp=8°—8° — E(Ula — v20) + 3(w1 — wp),
= 3 -
biz = —(p+¢)9° — E(p +q)v2 — Bpz — q2)9 — Bpz + 9z2)-
3
bo1 = _(P + Q)az - E(p + Q)Ul - (3% - pz)a - (3QZZ + pzz)
and
v1z = —2(pq):, v2; = —2(pq)z; w1z = (pqz):, w2, = (qp2)z

Eq. (5) takes the form 1

3 - —
P = Przz+ prz+ 5 (1p: + v2pz) — 300 Y(gp2):l + 0 H(gp2):D p.

3 _
9 = Gz + gz + (0192 + vag3) — 30 (pg)zl + 07 M(pa2)D)g. @)

Eqgs.(6) and (7)are called the Davey—Stewartson equations. In fact these are the equations
DSll; and DSIg from the DSII hierarchy. The equation Dgltiakes the forng5) whereA,,
equals

(_1)n+lan 0
An = 0 P

here by- - - we denote terms of lower order.

1 Eq. (5) after a formal substitution of A and B reduces to the system

3 1
Pt = Pz + Pzt E(vlpz +v2pz) + 3| w1 — w2+ SV )| P

3 1
Gt = qzzz + gz + E(Ul‘k +v2gz) — 3| w1 — w2 — >V ) 4
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Forn = 1 we have

[0 g (-0 —(p+9
A1_<p 5)’ Bl_(—(p+q) 8—5>’

and the DSH equations are

Pt = pz + Pz, qr = qz +qz.

Remark that the DSI hierarchy is a hierarchy of nonlinear equations obtained from the
DSII hierarchy by replacing the variables; by real-valued variables, y.
Let us consider the reduction of the DSII hierarchy for the case

Eq. (6) is not compatible however the substitution

A2 — (A2, By - iB

into (5) gives a reduction of6) compatible with(8):
up = iy, +uz+ 20+ o)),  vr=(ul’),. 9)
The substitution of8) into (7) gives
Uy = Uy + uzz + 3u, + vuz) + 3w + wu, vr = (lul?).,
wzy = (uu;);, u/Z = (uuz)z. (20)
For brevity we shall call Eqg9) and (10)y the DS and DS equations, respectively.
In difference with(9) the DS equation is compatible with the constraint= u and for
real-valued potentials it reduces to the modified Novikov—Veselov equation:
u; = ugy + uzzz + 3(ug + vuzg) + g(vZ + vDu, vr = (u?),. (11)

Notice thatA, depends on two functional parameters whichaaedg and put

A,T:A, forp=—u, g =u, A=A, forp=—-u, qg=u.

n

Now let us recall the definition of the DS deformations of a surface introducgd.in

Proposition 4 ([9]). Let a surface X be defined by the formulas (1) and (2) for some ¥°, ¢°
and let U(z, z, t) be a deformation of the potential described by EQ. (9) or (10). Then the
formulas (1) and (2) and the equations

Y = iAzr’»”v o= —iA5 0, Y = A;ﬁ//, o= Az (12)

with Yi—o = ¥°, g,—0 = ¢°, define deformations of the surface governed by Eqs.(9) and
(10), respectively.
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The proof of this proposition is as follows. Since the deformatioti ef u is described
by Eq.(5), the vector functiongr ande meetingDyr = 0 andD" ¢ = 0 are deformed via
Eq.(12)and for any they meet again the Dirac equations. Thereforé?ipposition lthey
define a surface; via the Weierstrass formuld$) and (2) Thus, we have a deformation
Y such thatyy = X.

Any equation of the DSII hierarchy defines such a deformationi{fewen we have to
substituted,, — iA,, to preserve the reductign= —g). We write down only two equations,
DS, and DS, because they resemble the main properties of others and do not involve very
large expressions.

Foru = u such a deformation reduces to the mNV deformation defingg] end studied
in [13,14,5,10,2]

3. The Weierstrass representation

An oriented two-plane ifR* is defined by a positively oriented orthonormal basis

e1=(e11,...,e14), e2=(e21,...,€24)

which is defined up to rotations. There is a one-to-one correspondence
{(e1, €2)} <> (y1:y2:y3: ya), vk =evr +iezk, k=1234,

between the moduli space of such planes (which is the Grassma&im@rand points of
the quadrioQ c CP? defined by the equations

i+ +yi+yi=0.
In terms of another homogeneous coordinates. ., y, such that
_ i / / _ } / / _ } / /
n=301+y2  y2=501-)  y3=503+)

i
va = 503~ y4)
this quadric is written as

VA, !’

Y1Y2 = Y34
Therefore, the correspondence

y1 = azba, yp = a1by, y3 = azby, yg = aibz
establishes a biholomorphic equivalence

64’2 =cprlxcprt,
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where @1 : a) and {1 : bp) are homogeneous coordinates on the copie€ Bt. This
mappingCP! x CP1 — Q c CP3is called the Segrmapping.

Letr : W — R* be an immersion of a surface with a conformal paramete ¢ C.
The conformality condition reads

4
(reor) = ()2 =0,
k=1

Wherexlz‘ = % k=1,2,3,4. The Gauss map takes the form
G:W — Gap, QeW— (HQ): - xX0)).
By using the equivalencg4 2 = CP! x CP!, decomposé into two maps
G = (GV/’ G(p),
where
Gy = (Y1 : ¥2) € CPY, Gy = (p1:¢2) e CP*
and rewrite the formulas fo«’g in terms of these maps as follows:
i - , 1_ - s 1 —
x; = 5((021#2 + 191), x5 = é(wzlﬂz — 1Y11), x; = é(wzwl + p192),
X = é((ﬁzwl — p192). (13)
We have
e =, k=123, 4,
where the formg, take the same shapes asAiroposition 1

This decomposition is not unique and functiahsinde are defined up to gauge trans-
formations

Y1 ey ®1 e /1
()= (en) ()= ()

By choosing a representativefor G, we fix a functiongp.

The formula(1) gives exactly a gauge transformation between different lifts of the Gauss
mappingG = (Gy, G,) to non-vanishing spinors, i.e. t&f \ {0}) x (C?\ {0}), which we
mention in the introduction.

The closedness conditions for the formsare

(p2v1)z = (P2v72)zs (@2v2)7 = —(@2v2)- (15)
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and they do not have the form of Dirac equatiddgs = 0 andD" ¢ = 0 for arbitrary
representativesy(1, ¥2) and 1, ¢2) of the mappingss, andG,. Such representatives
have to be found by solving some differential equations.

Let us start with the following lift forGy = (¥1 : v¥2) which is correctly defined up to
a+1 multiple:

s1= €% cosy, so = sin .
We look for a pair of functiongr1, ¥» meeting two conditions:

(1) Gy =W1:¥2) = (s1:52);
(2) Dy = 0 for some potential/.

By the first conditiony has the form
Y1 = €551, Yo = s,
The second condition is written as
e sinn) +Uet? cosn=0, 3t cosn) = Ue* sinn.
These equations are rewritten as follows:

U= ——————
esti? cos

n(z?z sin n + 1 cosn),

U (g, cosn —if, cosn — n, sinn),
n

" estif sin

which imply
gr+ibzcod =0, U=—e"3"36, sinycosy+n).

Thead-problem forg is solved by the well-known means and its solution is defined up to
holomorphic functions. Therefore, the potentisis defined up to a multiplication by*e”
wheren is an arbitrary holomorphic function.

It is derived by straightforward computations tl2# = 0 implies that the condition
(15) takes the form of the Dirac equatid@»’ ¢ = 0.

Thus, the following theorem is derived.

Theorem 1. Let r : W — R* be an immersed surface with a conformal parameter z and
let Gy = (€ cosn : sin n) be one of the components of its Gauss map.

There exists another representative VW of this mapping Gy = (Y1 : ¥r2) such that it meets
the Dirac equation

Dy =0

with some potential U.



1244 LA. Taimanov / Journal of Geometry and Physics 56 (2006) 1235-1256

A vector function Y = (€$11% cosn, €8 sin n) is defined from the equation
gz = —ib7 cos n, (16)

up to holomorphic functions and the corresponding potential U is defined up by the formula
U = —e*¢(ig. sinn cosy + 1.)

up to multiplications by € ~" where h is an arbitrary holomorphic function.
Given the function \, a function ¢ which represents another component G, of the Gauss
map meets the equation

DYp =0.

Different representations (lifts) of the Gauss mapping G of the surface W are related by
gauge transformations of the form

V1 L= e}i V1 ZANN o= e_}ifﬂl
V2 ey )’ 92 el )’
U U =éd"y, (17)

where h is an arbitrary holomorphic function on W.

Since we decompose the Gauss map into two comporgntand G, with functions
Y andg meeting the Dirac equations, we obtain the surface by integrating the differentials
dx* given by(13). The formulag3) and (4)for the metric and the potential are obtained by
simple computations. We have

Corollary 1. Every oriented surface in R* admits a Weierstrass representation given by
Proposition 1

However, the non-uniqueness of such a representation leads to the following conclusion.

Corollary 2. For any surface r : W — R* where W is an open subset of C and any sub-
domain V. .C W such that V # W there is a Weierstrass representation of r|y : V — R*
which is not analytically continued (i.e. expanded) onto W.

Proof. For that take a Weierstrass representatioipfestrict it ontoV and take a gauge
equivalent representation Gftorresponding to a transformati@ti7)wheres : V — Cisa
holomorphic function which is not analytically continued omtoThen this representation
of Vis not expanded ont®. This proves the corollary. [

The following theorem is clear.

Theorem 2. Given a Weierstrass representation of an immersed closed oriented surface
X into R?, the corresponding functions yr and ¢ are sections of the C*>-bundles E and E"
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over X which are as follows:
(1) E and EV split into sums of pair-wise conjugate line bundles
E = Eo® Ej, EV =Ey ® Ey

such that 1 and 1;2 are sections of Eg and @1 and ¢ are sections of Egy;
(2) the pairing of sections of Eg and E§ is a (1, 0) form on X: if

a € I'(Ey), B € I'(Eg),
then

afdz

is a correctly defined 1-form on X,
(3) the Dirac equation Dyr = O implies that U is a section of the same line bundle Ey as

8 —
Y e r(Ey), fora e I'(Eo), y e I'(Eo)
o

and the quantity UU dz A dZ is a correctly defined (1, 1)form on X whose integral
equals

/ UUdz A d7 = —2W(E)
5 2

where W(X) = .[2 |H|? du is the Willmore functional of X.

Notice that for surfaces i3 functionsy are sections of spinor bundIgk3] and the
gauge transformatiofl7) shows that for surfacé®? this is not necessarily a case.

It is derived fromProposition lthat, given a Riemann surfacg, such bundleg, EV,
andEy and solutions) andg to the equation®y = 0 andD" ¢ = 0, one may construct
an immersion of the universal covering Bfinto R*. The Gauss mapping of this immersion
descends througly. Let us give a criterion for converting such an immersion into an
immersion of the surfac&y.

Proposition 5. Let X be an oriented closed surface, let 3 be its universal covering and let
(W, @) define an immersion of X into R* via (1) and (2). Then such an immersion converts
into an immersion of X if and only if

/&ﬂfldz_Aw:/lezdz_Aw:/wzaldz_/\wzflﬁztpzdz_/\wzo
X P P X
(18)

for any holomorphic differential w on X.
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Proof. Letg > 1bethegenusaf. Thenthereisabasig, ..., a, f1,...,f; of 1-cycles
on ¥ such that¥ = X/I" and the fundamental domain for the action/of= 71(X) is a
domaing2 on X whose boundary has the form

02 = arpray TBr . o B
Denote by d?, ..., dx* the closed 1-forms o induced by the immersion int&* and
denote byv1, ..., V*the period vectors

8

vk = / dxk,...,/
al [+3

An immersion of% converts into an immersion & if and only if

dx, dxk,...,/ dxk>, k=1,2 3 4.
Bk ﬁg

vi—vi_vi=-v4=o.

Given a holomorphic formw on X, pull it back onto the universal covering and compute
the integral

g g
oo ([ [ ad- [ >: (Vz«/ _w/)
xw w w w w
/89 ;( o) Bj aj Bj ; o aj / Bj

which is by the Stokes theorem equals

/ kaz/xlgdz_Aw.
382 Q

A Riemann surface has a basisy, . . ., wg for holomorphic differentials normalized by
the condition

/ wp = 8,'./.
Qi

J

In this event thes-periods matrix

Bij/ Wy
Bj

is symmetric with positive imaginary part: Il > 0. This implies that the conditions

Z(Vfﬂ,/ a)l—VJ]-‘/ wl>=0, I=1,...,g,
i o Bj

J=1
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fora vectorV* with real entries are satisfied if and onlyif = 0. Therefore, an immersion
of X converts into an immersion of a closed surfacd and only if

/x’zidz_/\a)zo
2

foranyk =1, ..., 4 and any holomorphic differential on X. It follows from (1) that that
is equivalent to the equaliti€48). This proves the proposition. [
4. Deformations of tori via the Davey—Stewartson equations

Let us look whafTheorem Igives us for tori.

Theorem 3. Let X be a torus in R* which is conformally equivalent to C/A and 7 is a
conformal parameter.
Then there are vector functions W, ¢ and a function U such that

(1) ¥ and ¢ give a Weierstrass representation of X,
(2) the potential U of this representation is A-periodic;
(3) such functions ¥, ¢, and U are defined up to gauge transformations

~h _
e — efil/jl , o1 — e_<p1 , U— Uy,
V2 ety ®2 e gy
(19)

where
h(z) = a + bz, Im (by) € nZ, forally e A.

Therefore, such representations are parameterized by a 7.2 lattice formed by admissible
values of b.

Proof. By Theorem lgiven a Weierstrass representation of a torus (with a fixed conformal
parameter) the Dirac equations are satisfied if and only if

U=—e879.6, sinpcosn+n.), y1=€""8cosy, yr=¢€siny

whereg meets Eq(16). The component of the Gauss mappi@ig = (€ cosy : sin ) is
A-periodic andU takes the fornU = e$~8Uqg where

Up = if, sinn cosn + n,
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is periodic with respect ta. By (16), gz is periodic and a general solution(tb) takes the
form

g=h@@)+cz+ f(z.2),

whereh(z) is an arbitrary holomorphic functiofijs some periodic function, and
c=— / 0z cos ndxdy.
JM

Hence,U is a A-periodic function if and only ifg = a + bz + ¢z (modulo periodic func-
tions) and £(z) — g(z)) € 2nZ for z € A. The latter conditions are easily resolved arid
defined up td’ such thatk’y — b'y) € 2xZ for all y € A. This proves the theorem. [

Now let us look for the DS deformations of tori. Exactly in this case in difference with
high genera compact surfaces the constraints for defining additional potentiatscould
be globally resolved. As ifiL3] we are interested in two problems:

e when a deformation from the DS hierarchy deforms a torus into tori?
¢ when the “Willmore functional’[. uu dz A dz is preserved by such a deformation.

For that we have to resolve the constraint equations.far, andw’ carefully choosing
specific solutions.

We consider only the D&and DS equations since we do not know until recently ageneral
recursion procedure for writing down explicit formulas for higher equations. However, it
is a general point in the soliton theory that the first nontrivial equations in the hierarchy
usually resemble the main properties of higher equations.

Since we derive for tori that there is a representation with a double-periodic potential
we can look for solutions of the DS equations with such an initial data. In addition we have
to define such resolutions of constraints (i.e. the additional potentials$) to obtain the
equations with double-periodic coefficients and, hence, double-periodic solutions.

We do not discuss the existence of a solution assuming that it exists which, in particular,
for short times follows from the Cauchy—Kovalevskaya theorem.

4.1. The DS deformation

We have

Vi =iASY,  e=—-idye,  vr=(ul?)..

When we work with compact surfaces we have to resolve the constraint equation for
globally. Moreover, for tori we would like to save the periodicity of the integrands of the
Weierstrass representation, i.e. terms which are of the fofg or similar to it, we have
to have a periodic potential
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This is quite easy: the constraint foris uniquely resolved by an inversion of tide
operator on a torus assuming that dz A dz = 0. The reason is the same as for the mNV
deformation (se¢13]): since the right hand-sideu(?), of the constraint equation is a
derivative of a periodic function its Fourier decomposition does not contain a non-zero term
and thed-operator is inverted term by term of the Fourier decomposition. Thus, we have:
v = (). / vz A dT= 0, (20)
by

Here and in the sequel we identify with a fundamental domain for the lattieesuch that
the torus is conformally equivalent €@/ A.

Theorem 4. The DS> equation
wy = i(ug; +uzz + 2(v + v)u)

where v is defined by (20) induces a deformation of tori (with a fixed periodic potential of
their Weierstrass representations) into tori.

Proof. We have to prove that the closedness condit{d®3 are preserved. We show that
only for one of them because for others the proofs are basically the same. There is one
dimensional family of holomorphic differential on a torus generated HyWe have to

prove that

J=/1ﬂ2(p2dz/\ dz=0
)

implies thatJ, = 0.
We have

Yo = i[(ud — u )y + (2 + )2l ga = —il(ud — i:)g1 + (% + V)gal.

Substituting that into

Ji = / (V292 + Yoo )dz A dz
z

(notice that the integrand is correctly defined as a functiotwpne. it is double-periodic,
althoughy» andg, are not periodic) we obtain

J = i[;[(u%z — u )2 + (Vorz + v2)e2 — (w1 — uz@1)¥2

—(p2z7 + ve2)¥r2]dz A dz.
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Integrating by parts some of terms and canceling terms repeated with different signs we
derive

Ji = i/E[("“plz — uz¥n)g2 — (up1, — uzp1)y2ldz A dz.

Now an integration by parts implies that

h=i /E W02 + u(Yig). — g2 — i(Yapr)Jdz A d7

= L [2(u@2) Y1, + (uir1)p2; — 2uir2)p1; — (up1)yz:1dz A dz.

By using the Dirac equations replace the terms in brackets to exclude the poteatials
u from the integrand:

J=2i / (p1z¥1; — @re¥1z)dz A dz.
X

An integration by parts implieg, = 0 which proves the theorem.

Remark that we never use in the proof thiat 0 for the initial torus. Therefore, we
proved more: the DSdeformation preserves the translational periods of surfaces with
double-periodic Gauss mapping.

Since we proved that tori are preserved it is reasonable to speak about the conservation
laws for the DS deformations. We have

Theorem 5. The DS> deformation of tori preserves the Willmore functional.
Proof. We have
% /}: u|?dz A dz = /Z(u,17+ uiy)dz A dz = iﬂ;[ﬁ(uZZ +uz+ 2(v + v)u)
—u(uz+uz42@w + v)u)ldz A dz = i/z(lfuzz—m?ZZ + uuzz — uuz)dz A dz.

By integrating by parts the last integral, we easily derive that

d 2 —
E/2|u| dzA dz=0

which proves the theorem. O

Remark 1. By Proposition 2there are two potentialg andv, which are coming into the
equation. We choose an additional constraiat v1 = v,. Without this constraintheorem
4 does not hold as one can see from its proof.
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In fact we assumed more, thfitvsdz A dz vanishes. This was not important: if we put
v — v+ f(¢) then the deformation reduces to a composition of the initial one and some

evolution tangent to a torus, i.e. this results in adding a diffeomorphism of a torus which
does not affect the geometric picture.

4.2. The DS3 deformation

For this deformation we have
v =A3Y. o =Azp

and many constraints which we have to resolve. As in the case of the&8rmation we
put

vr = (Jul?)-, / vdz A dZ7=0 (21)
b))

and in addition we choose andw’ as follows:

w=099Yuu,),  w =39 Y(uus). (22)
These functions satisfy the constraint equati@®y however they are very specific partic-
ular solutions to them.

Moreover, we have to resolve the constraint equationsfandw, which are different
for AT andA~. We put

w'f:w—vz, wé":—u/, w] = —w, w, =w — vz,

v =2, v = 2v. (23)

The reasonings for these choices we shall explain later.
Theorem 6. The DSz equation
Uy = Uyyy + uzzg + 3(vuy + vuz) + 3w + w'u

induces a deformation of tori (with fixed periodic potential of their Weierstrass representa-
tions) into tori.

Proof. We again demonstrate that only for one of the closedness conditions. Let us take
the same as in the proof @heorem 4We have
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Yor = (—ud® + 129 — uz; — Svu) Y1 + (8° + 309 + 3w Yo,
@ = (—it? + 9 — i, — 3vit)gr + (3% + 300 — 3w — v7))g2.

Substitute that into
Ji = / (Y22 + Yap2) dz A dz.
P

An integration by parts shows that

/ (Yo7 + 3vv2) @2 + (9077 + vgor + 3vzpa)Ya]dz A dz7 =0
b

and we are left to prove that

L (—ure: + ustpre — (uze + 3o ya)gz

+ (_IZ(Plzz + uzp1; — (uz; + 3vu)1)Y2] dz A dz = 0.

Let us rewrite the left-hand side of this formula as

Jr = /Z[(—(ulﬂl)zz + 3u, Y1, — 3vuyn)es + (—(U491)zz + i1
— 3vugp1yr2)]dz A dz

which by the Dirac equatiorBy = D" ¢ = 0, equals to

Ji = /}: [(V2r22+3uz )2 — Buvrigaz + (92:2: + Buzg1:)¥2 — Svyzpr] dz A dz

= /E(szzz<ﬂ2+1ﬁ2<ﬂ2zzz)dz A dz_+3/E(Mzle(ﬂerszlﬂz(plz—U(iﬂlwl)z‘) dz A dz.

An integration by parts shows that the first summand vanishes ar{@1hywe have

Ji = 3/2(%1#1#2 + 01 + (ul?).y1e1) dz A dz
= 3/Z(Mz1ﬁ1z§02 + u Y291, + uuy1er + uzuier) dz A dz
= 3/2[uz(1/flz¢2 — Y192:) + uz (912 — @ayrar)] dz A dz
=3 [ [utyavac: — Vicegs) + Wlorvas: — precvalldz A &

= 3/2:(_1/f21‘p2zz — V12017 — 2. V22 — Y1z9122) dz A dz.
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Now by integrating by parts we easily derive from the last formula that

][:O.

Analogous reasonings show that other closedness condffibhare also preserved by the
flow. This proves theorem. [

As in the case of the DSlow we actually show that the 3%leformation preserves the
translational periods of surfaces with double-periodic Gauss mapping.

As in the case of the DSdeformation the Willmore functional is preserved, i.e. the
following theorem holds.

Theorem 7. The DS3 deformation with the additional potentials of the form (21-23)
preserves the Willmore functional.

Proof. We have
d

@ L lul?dz A dz = /E(uﬂ;—f- uuy)dz A dz = /E[("{zzz + uzzz + 3(vu; + vuz)
+ 3w + wu)u + uuy,, + uzz + 3uz + vuy)
+ 3(6 + u_}/)’/_‘)] dz A dz = /;T[(MZZZII+ W/Tzzz) + (“E’I‘i‘ W/TZE)] dz A dz.
+3 [ ud + Pz A 643 [ (o4 '+ Dl A
z z

Anintegration by parts shows that the firstintegral vanishes, an@,1hythe second integral
equals to

3/2(vv;+ ) dz A dT= 0
(here we use that the functiaris double-periodic). We are left to prove that
/E(w+w+ w' + w)ul?dz A dz = 0.
We have
w+w =, w4+ w =5
Therefore, the investigated integral is rewritten as
/Z‘(UZ + ) ul?dz A d7 = — /}:(v(|u|2)Z + 0(ju)?)3) dz A dz

= —/(vvg—i—v_vz)dz/\ dz=0.
s

This proves the theorem. [J
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Remark 2. As for the DS deformation we choose the additional potentials carefully
to make the D% deformation geometric. For general potentials meeting the constraint
equations itis not the case. For instance, we may add any constards’ to w andw’ but

the proof ofTheorem &hows that ifc = ¢ + ¢’ + ¢ + ¢’ # 0 then the Willmore functional

is evolved as

W, = 3kW.
and is not preserved.

The most interesting feature of the DS deformations is that they are defined only for
surfaces with fixed potentials of their Weierstrass representations. Indeed, for a torus we
may take another gauge-equivalent potential

u—u =&y (24)

and apply the DS deformation for a torus with the potential. In this case the deformation
would be completely different geometrically. It is noticeable from the deformaticm|&f
which is, byProposition 1is a geometric quantity.

Let us demonstrate that for the P8eformation. The additional potentials defined by
(21)—(23)are the same as farbut atr = 0 the deformation ofu’|? is different from the
deformation oflu|2 and it is as follows:

du'(?  djul?

7 i 6 Re p(uq i + uiz) + a(uz.u — un,,)].

Although the first additional term is simple and equals to

dul®> 5 dlul?
3(aP—— — ),
<a 0z +a 0z

i.e. could come from one-parametric diffeomorphism group of the surface, the second term
involves the second derivatives and does not have such a form.
We conclude that

e the DS deformations are correctly defined only for surfaces with fixed potentials of their
Weierstrass representations and for different choices of the potentials such deformations
are geometrically different.

By Theorem 3for tori such deformations are parameterized B aattice.

If we shall speak on local deformations then the gauge group is much larger (a gauge
transformation is determined by a holomorphic function) and local deformations would be
very different for different choices of gauge-equivalent potentials.
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5. The spectral curve

It is reasonable to define the spectral curve for a toriR%ms the spectral curve of a
double-periodic operatdP coming in its Weierstrass representation.
Let us recall the definition of the spectral curve of a double-periodic Dirac opePator

([13).

For that consider all formal solutions to the equation
Dy =0
meeting in addition the following periodicity conditions:
Yz + yy) = ORIy () = uyv(). j=12

wherez € C andy1, y2 generate the periods lattice C C. Such solutions) are called
Floquet eigenfunctions (on the zero level of energy), the quantiligs are called the
quasimomenta of;, and (w1, u2) = u(y1), u(y2) are the multipliers ofy.

The quasimomenta satisfy some analytic relation (called in solid physics the dispersion
relation):

P(ky, ko) =0
which defines a complex cun@g in C? invariant with respect to translations
k—k+y*, v =01 1) €A%,

whereA* ¢ C = R? ¢ C2is the dual lattice toA.

We say that the complex curyé= Qo/A* is the spectral curve @ (on the zero energy
level). This definition originates in the definition of such a curve for a two-dimensional
Schibdinger operatof3]. The mappingM : I' — C? formed by the multipliersM =
(re1, w2) is called the multiplier mapping.

The spectral genus of a torus is defined as the geometric genus of the normalization of
r.

For tori in R3 it appears that such a curve together wi¢th contains an important
information about the conformal geometry of a torus. Our conjecture confirnjéfrieads
that the pair (] M) is preserved by conformal transformations of the ambient space
which map the torus int&3. The discussion of other properties of the spectral curve can
be found in[16].

For tori inR* the situation is slightly different: the curveis defined up to biholomorphic
equivalences however the multiplier mappings depend on the choice of a potential: the gauge
transformatior(24) acts oy and M as follows:

v — e %y, (n1, n2) = (€7 pg, €2 pp).
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This is rather reasonable. In the fundamental p&pErby Novikov the spectral curve
of an operator with a potential deformed via some soliton equation was considered as a
conservation law itself for this equation. Since we show in Secitat there are infinitely
many geometrically different soliton deformations of a toru&fhdescribed by the same
DS equation, these different curves are just the values of the same conservation law for
different solutions.
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