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Abstract

We show that any equation from the Davey–Stewartson hierarchy induces an infinite family of
geometrically different deformations of tori inR4 preserving the Willmore functional. We expose
a derivation of the Weierstrass representation for surfaces in the four-space, which is not unique in
difference from the case of surfaces in the three-space. This non-uniqueness implies that the spectral
curve of a torus inR4 is not uniquely defined as a complex curve formed by the Floquet multipliers.
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1. Introduction

The Weierstrass representation for surfaces inR3 [8,13] was generalized for surfaces
in R4 in [12] (see also[4]). This paper uses the quaternion language and the explicit for-
mulas for such a representation were written by Konopelchenko in[9] for constructing
surfaces which admit soliton deformation governed by the Davey–Stewartson equations.
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This generalizes his results from[8] where he introduced the formulas for inducing sur-
faces in the three-space which involve a Dirac type equations and defined for such surfaces
a deformation governed by the modified Novikov–Veselov (mNV) equations.

It was shown in[13] that the formulas for inducing surfaces inR3 [8] describe all surfaces
and that the modified Novikov–Veselov equation deforms tori into tori preserving the Will-
more functional which naturally arises and plays an important role in this representation.
The spectral curve of the corresponding Dirac operator is invariant under this deformation.
The global Weierstrass representation at least for real analytic surfaces could be obtained
by an analytic continuation from a local representation. Thus, a moduli space of immersed
tori is embedded into the phase space of an integrable system with the Willmore functional
and, moreover, the spectral curve as conservation quantities.

Looking forward to understand the spectral curves for tori inR4 we consider in this paper
the analogous problems for surfaces inR4 and show that this case is very different from
the three-dimensional case, in particular, by the following features which were overlooked
until recently:

• for tori in R4 every equation from the Davey–Stewartson (DS) hierarchy describes not
one but infinitely many geometrically different soliton deformations;

• the multipliers on the spectral curve for a torus inR4 are not uniquely defined and
different complex curves inC2 (the spectral curves immersed via the multipliers) are
invariants of different DS deformations.

The reason for that is quite clear and consists basically in the non-uniqueness of a
Weierstrass representation.

A surface inR3 is constructed in terms of one vector functionψ (spinor) which is a lift of
the Gauss mapping into non-vanishing spinors. Such a lift is defined up to a sign by fixing
a conformal parameter on the surface. This functionψ satisfies a Dirac equation.

A surface inR4 is constructed in terms of two vector functionsψ andϕ which form
again a lift of the Gauss mapping. However, in this case by fixing a conformal parameter
one defines a lift only up to a gauge transformation given byef wheref is any smooth
function. Moreover not every lift satisfies the Dirac equations and the lifts meeting these
equations are defined up to gauge transformationseh whereh is a any holomorphic function.

In particular, given a Weierstrass representation of a surfaceΣ ⊂ R4 and a domainW ⊂
Σwe can replace a representation of the domain by gauge-equivalent using a transformation
eh whereh is a holomorphic function onW which is not analytically continued onto the
surface. Thus, we obtain a representation of a domain, which is not continued (i.e. expanded
to a representation of a surface). This also makes a difference with the case of surfaces in
R

3.
Another important point is that the DS equations contain the additional potentials, which

are defined by resolving the constraint equations. Such resolutions are not unique and we
have to choose the potentials carefully to make the DS deformations geometric: for some
special choices of the additional potentials the corresponding DS deformations map tori
into tori preserving the Willmore functional. However, in general this is not the case and
we show how to achieve that in Section4.
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2. Explicit formulas for a representation and soliton deformations

Let us recall the explicit formulas for inducing a surface and its soliton deformation via
the Davey–Stewartson equation.

The following proposition is derived by straightforward computations.

Proposition 1 ([9]). Let vector functionsψ and ϕ be defined in a simply connected domain
W ⊂ C (with a complex parameter z) and meet the Dirac equations

Dψ = 0, D∨ϕ = 0,

where

D =
(

0 ∂

−∂̄ 0

)
+
(
U 0

0 Ū

)
, D∨ =

(
0 ∂

−∂̄ 0

)
+
(
Ū 0

0 U

)
.

Then the 1-forms

ηk = fk dz+ f̄k dz̄, k = 1,2,3,4,

with

f1 = i

2
(ϕ̄2ψ̄2 + ϕ1ψ1), f2 = 1

2
(ϕ̄2ψ̄2 − ϕ1ψ1), f3 = 1

2
(ϕ̄2ψ1 + ϕ1ψ̄2),

f4 = i

2
(ϕ̄2ψ1 − ϕ1ψ̄2) (1)

are closed and the formulas

xk = xk(0) +
∫
ηk, k = 1,2,3,4, (2)

define a surface in R4 (here the integral is taken over any path in W and by the Stokes
theorem does not depend on a choice of path).

The induced metric equals

e2α dzdz̄ = (|ψ1|2 + |ψ2|2)(|ϕ1|2 + |ϕ2|2) dzdz̄ (3)

and the norm of the mean curvature vector H = 2xzz̄
e2α meets the equality

|U| = |H|eα
2

. (4)

For U = Ū andψ = ±ϕ these formulas reduce to the Weierstrass representation for
surfaces inR3.

The existence of a local representation of any surface inR
4 by these formulas is not proved

in [9] although it was indicated in[12] that the Weierstrass representation for surfaces in
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R
3 is generalized for surfaces inR4 and involves in this case two vector functionsψ andϕ

and a complex valued potentialU.
We expose such a derivation in the next section revealing some features not taking place

in the three-dimensional case. Remark that for Lagrangean surfaces inR
4 this representation

was discovered in other terms by Hélein and Romon[7].
Let

L =
(

0 ∂

−∂̄ 0

)
+
(

−p 0

0 q

)
.

Let us consider deformations of this operator which take the form of Manakov’sL,A,B-
triple:

Lt + [L,An] − BnL = 0 (5)

or

[L, ∂t − An] + BnL = 0.

Notice that ifL meets(5), then the solution of the equation

Lψ = 0

is evolved as follows:

ψt = Anψ.

The following two propositions are proved by straightforward computations.

Proposition 2. For

A2 =
(

−∂2 − v1 q∂̄ − qz̄

−p∂ + pz ∂̄2 + v2

)
,

B2 =
(
∂2 + ∂̄2 + (v1 + v2) −(p+ q)∂̄ + qz̄ − 2pz̄
(p+ q)∂ − pz + 2qz −(∂2 + ∂̄2) − (v1 + v2)

)
,

where

v1z̄ = −2(pq)z, v2z = −2(pq)z̄,

Eq.(5) takes the form

pt = pzz + pz̄z̄ + (v1 + v2)p, qt = −qzz − qz̄z̄ − (v1 + v2)q. (6)
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Proposition 3. For

A3 =


 ∂3 + 3

2
v1∂ − 3w1 q∂̄2 − qz̄∂̄ + qz̄z̄ + 3

2
v2q

p∂2 − pz∂ + pzz + 3

2
v1p ∂̄3 + 3

2
v2∂̄ − 3w2


 ,

B3 =
(
b11 b12

b21 b22

)
,

where

b11 = −b22 = ∂̄3 − ∂3 − 3

2
(v1∂ − v2∂̄) + 3(w1 − w2),

b12 = −(p+ q)∂̄2 − 3

2
(p+ q)v2 − (3pz̄ − qz̄)∂̄ − (3pz̄z̄ + qz̄z̄),

b21 = −(p+ q)∂2 − 3

2
(p+ q)v1 − (3qz − pz)∂ − (3qzz + pzz)

and

v1z̄ = −2(pq)z, v2z = −2(pq)z̄, w1z̄ = (pqz)z, w2z = (qpz̄)z̄,

Eq.(5) takes the form 1

pt = pzzz + pz̄z̄z̄ + 3

2
(v1pz + v2pz̄) − 3(∂−1[(qpz̄)z̄] + ∂̄−1[(qpz)z])p,

qt = qzzz + qz̄z̄z̄ + 3

2
(v1qz + v2qz̄) − 3(∂−1[(pqz̄)z̄] + ∂̄−1[(pqz)z])q. (7)

Eqs.(6) and (7)are called the Davey–Stewartson equations. In fact these are the equations
DSII2 and DSII3 from the DSII hierarchy. The equation DSIIn takes the form(5) whereAn
equals

An =
(

(−1)n+1∂n 0

0 ∂̄n

)
+ · · ·

here by· · · we denote terms of lower order.

1 Eq.(5) after a formal substitution of A and B reduces to the system

pt = pzzz + pz̄z̄z̄ + 3

2
(v1pz + v2pz̄) + 3

(
w1 − w2 + 1

2
v1z

)
p,

qt = qzzz + qz̄z̄z̄ + 3

2
(v1qz + v2qz̄) − 3

(
w1 − w2 − 1

2
v2z̄

)
q,
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Forn = 1 we have

A1 =
(
∂ q

p ∂̄

)
, B1 =

(
∂̄ − ∂ −(p+ q)

−(p+ q) ∂ − ∂̄

)
,

and the DSII1 equations are

pt = pz + pz̄, qt = qz + qz̄.

Remark that the DSI hierarchy is a hierarchy of nonlinear equations obtained from the
DSII hierarchy by replacing the variablesz, z̄ by real-valued variablesx, y.

Let us consider the reduction of the DSII hierarchy for the case

p = −u, q = ū. (8)

Eq.(6) is not compatible however the substitution

A2 → iA2, B2 → iB2

into (5) gives a reduction of(6) compatible with(8):

ut = i(uzz + uz̄z̄ + 2(v+ v̄)u), vz̄ = (|u|2)z. (9)

The substitution of(8) into (7) gives

ut = uzzz + uz̄z̄z̄ + 3(vuz + v̄uz̄) + 3(w+ w′)u, vz̄ = (|u|2)z,

wz̄ = (ūuz)z, w′
z = (ūuz̄)z̄. (10)

For brevity we shall call Eqs.(9) and (10)by the DS2 and DS3 equations, respectively.
In difference with(9) the DS3 equation is compatible with the constraintu = ū and for

real-valued potentials it reduces to the modified Novikov–Veselov equation:

ut = uzzz + uz̄z̄z̄ + 3(vuz + v̄uz̄) + 3

2
(vz + v̄z̄)u, vz̄ = (u2)z. (11)

Notice thatAn depends on two functional parameters which arep andq and put

A+
n = A, forp = −u, q = ū, A−

n = A, forp = −ū, q = u.

Now let us recall the definition of the DS deformations of a surface introduced in[9].

Proposition 4 ([9]). Let a surfaceΣ be defined by the formulas (1) and (2) for someψ0, ϕ0

and let U(z, z̄, t) be a deformation of the potential described by Eq. (9) or (10). Then the
formulas (1) and (2) and the equations

ψt = iA+
2 ψ, ϕt = −iA−

2 ϕ, ψt = A+
3 ψ, ϕt = A−

3 ϕ (12)

with ψt=0 = ψ0, ϕt=0 = ϕ0, define deformations of the surface governed by Eqs.(9) and
(10), respectively.
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The proof of this proposition is as follows. Since the deformation ofU = u is described
by Eq.(5), the vector functionsψ andϕ meetingDψ = 0 andD∨ϕ = 0 are deformed via
Eq.(12)and for anyt they meet again the Dirac equations. Therefore, byProposition 1they
define a surfaceΣt via the Weierstrass formulas(1) and (2). Thus, we have a deformation
Σt such thatΣ0 = Σ.

Any equation of the DSII hierarchy defines such a deformation (forn even we have to
substituteAn → iAn to preserve the reductionp = −q̄). We write down only two equations,
DS2 and DS3, because they resemble the main properties of others and do not involve very
large expressions.

Foru = ū such a deformation reduces to the mNV deformation defined in[8] and studied
in [13,14,5,10,2].

3. The Weierstrass representation

An oriented two-plane inR4 is defined by a positively oriented orthonormal basis

e1 = (e1,1, . . . , e1,4), e2 = (e2,1, . . . , e2,4)

which is defined up to rotations. There is a one-to-one correspondence

{(e1, e2)} ↔ (y1 : y2 : y3 : y4), yk = e1,k + ie2,k, k = 1,2,3,4,

between the moduli space of such planes (which is the GrassmannianG̃4,2) and points of
the quadricQ ⊂ CP3 defined by the equations

y2
1 + y2

2 + y2
3 + y2

4 = 0.

In terms of another homogeneous coordinatesy′
1, . . . , y

′
4 such that

y1 = i

2
(y′

1 + y′
2), y2 = 1

2
(y′

1 − y′
2), y3 = 1

2
(y′

3 + y′
4),

y4 = i

2
(y′

3 − y′
4)

this quadric is written as

y′
1y

′
2 = y′

3y
′
4.

Therefore, the correspondence

y′
1 = a2b2, y′

2 = a1b1, y′
3 = a2b1, y′

4 = a1b2

establishes a biholomorphic equivalence

G̃4,2 = CP1 × CP1,
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where (a1 : a2) and (b1 : b2) are homogeneous coordinates on the copies ofCP1. This
mappingCP1 × CP1 → Q ⊂ CP3 is called the Segré mapping.

Let r : W → R
4 be an immersion of a surface with a conformal parameterz ∈ W ⊂ C.

The conformality condition reads

〈rz, rz〉 =
4∑
k=1

(xkz)
2 = 0,

wherexkz = ∂xk

∂z
, k = 1,2,3,4. The Gauss map takes the form

G : W → G̃4,2, Q ∈ W → (x1
z(Q) : · · · : x4

z(Q)).

By using the equivalencẽG4,2 = CP1 × CP1, decomposeG into two maps

G = (Gψ,Gϕ),

where

Gψ = (ψ1 : ψ̄2) ∈ CP1, Gϕ = (ϕ1 : ϕ̄2) ∈ CP1

and rewrite the formulas forxkz in terms of these maps as follows:

x1
z = i

2
(ϕ̄2ψ̄2 + ϕ1ψ1), x2

z = 1

2
(ϕ̄2ψ̄2 − ϕ1ψ1), x3

z = 1

2
(ϕ̄2ψ1 + ϕ1ψ̄2),

x4
z = i

2
(ϕ̄2ψ1 − ϕ1ψ̄2). (13)

We have

dxk = ηk, k = 1,2,3,4,

where the formsηk take the same shapes as inProposition 1.
This decomposition is not unique and functionsψ andϕ are defined up to gauge trans-

formations(
ψ1

ψ2

)
→
(

efψ1

ef̄ ψ2

)
,

(
ϕ1

ϕ2

)
→
(

e−f ϕ1

e−f̄ ϕ2

)
. (14)

By choosing a representativeψ for Gψ we fix a functionϕ.
The formula(1)gives exactly a gauge transformation between different lifts of the Gauss

mappingG = (Gψ,Gϕ) to non-vanishing spinors, i.e. to (C2 \ {0}) × (C2 \ {0}), which we
mention in the introduction.

The closedness conditions for the formsηk are

(ϕ̄2ψ1)z̄ = (ϕ̄1ψ2)z, (ϕ̄2ψ̄2)z̄ = −(ϕ̄1ψ̄1)z (15)
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and they do not have the form of Dirac equationsDψ = 0 andD∨ϕ = 0 for arbitrary
representatives (ψ1, ψ2) and (ϕ1, ϕ2) of the mappingsGψ andGϕ. Such representatives
have to be found by solving some differential equations.

Let us start with the following lift forGψ = (ψ1 : ψ̄2) which is correctly defined up to
a±1 multiple:

s1 = eiθ cosη, s2 = sin η.

We look for a pair of functionsψ1, ψ2 meeting two conditions:

(1) Gψ = (ψ1 : ψ̄2) = (s1 : s̄2);
(2) Dψ = 0 for some potentialU.

By the first condition,ψ has the form

ψ1 = egs1, ψ2 = eḡs2.

The second condition is written as

∂(eḡ sin η) + U eg+iθ cosη = 0, ∂̄(eg+iθ cosη) = Ū eḡ sin η.

These equations are rewritten as follows:

U = − eḡ

eg+iθ cosη
(ḡz sin η+ ηz cosη),

U = eḡ

eg+iθ sin η
(ḡz cosη− iθz cosη− ηz sin η),

which imply

gz̄ + iθz̄ cos2 η = 0, U = −eḡ−g−iθ(iθz sin η cosη+ ηz).

The∂̄-problem forg is solved by the well-known means and its solution is defined up to
holomorphic functions. Therefore, the potentialU is defined up to a multiplication by eh̄−h
whereh is an arbitrary holomorphic function.

It is derived by straightforward computations thatDψ = 0 implies that the condition
(15) takes the form of the Dirac equationD∨ϕ = 0.

Thus, the following theorem is derived.

Theorem 1. Let r : W → R
4 be an immersed surface with a conformal parameter z and

let Gψ = (eiθ cosη : sin η) be one of the components of its Gauss map.
There exists another representativeψ of this mappingGψ = (ψ1 : ψ̄2) such that it meets

the Dirac equation

Dψ = 0

with some potential U.
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A vector function ψ = (eg+iθ cosη,eḡ sin η) is defined from the equation

gz̄ = −iθz̄ cos2 η, (16)

up to holomorphic functions and the corresponding potential U is defined up by the formula

U = −eḡ−g−iθ(iθz sin η cosη+ ηz)

up to multiplications by eh̄−h where h is an arbitrary holomorphic function.
Given the functionψ, a function ϕ which represents another componentGϕ of the Gauss

map meets the equation

D∨ϕ = 0.

Different representations (lifts) of the Gauss mapping G of the surface W are related by
gauge transformations of the form(

ψ1

ψ2

)
→ ψ′ =

(
ehψ1

eh̄ψ2

)
,

(
ϕ1

ϕ2

)
→ ϕ′ =

(
e−hϕ1

e−h̄ϕ2

)
,

U → U ′ = eh̄−hU, (17)

where h is an arbitrary holomorphic function on W.

Since we decompose the Gauss map into two componentsGψ andGϕ with functions
ψ andϕ meeting the Dirac equations, we obtain the surface by integrating the differentials
dxk given by(13). The formulas(3) and (4)for the metric and the potential are obtained by
simple computations. We have

Corollary 1. Every oriented surface in R4 admits a Weierstrass representation given by
Proposition 1.

However, the non-uniqueness of such a representation leads to the following conclusion.

Corollary 2. For any surface r : W → R
4 where W is an open subset of C and any sub-

domain V ⊂ W such that V 
= W there is a Weierstrass representation of r|V : V → R
4

which is not analytically continued (i.e. expanded) onto W.

Proof. For that take a Weierstrass representation ofW, restrict it ontoV and take a gauge
equivalent representation ofV corresponding to a transformation(17)whereh : V → C is a
holomorphic function which is not analytically continued ontoW. Then this representation
of V is not expanded ontoW. This proves the corollary. �

The following theorem is clear.

Theorem 2. Given a Weierstrass representation of an immersed closed oriented surface
Σ into R4, the corresponding functions ψ and ϕ are sections of the C2-bundles E and E∨
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over Σ which are as follows:

(1) E and E∨ split into sums of pair-wise conjugate line bundles

E = E0 ⊕ Ē0, E∨ = E∨
0 ⊕ Ē∨

0

such that ψ1 and ψ̄2 are sections of E0 and ϕ1 and ϕ̄2 are sections of E∨
0 ;

(2) the pairing of sections of E0 and E∨
0 is a (1,0) form on Σ: if

α ∈ Γ (E0), β ∈ Γ (E∨
0 ),

then

αβ dz

is a correctly defined 1-form on Σ;
(3) the Dirac equation Dψ = 0 implies that U is a section of the same line bundle EU as

∂γ

α
∈ Γ (EU ), forα ∈ Γ (E0), γ ∈ Γ (Ē0)

and the quantity UŪ dz ∧ dz̄ is a correctly defined (1,1)-form on Σ whose integral
equals

∫
Σ

UŪ dz ∧ dz̄ = − i

2
W(Σ)

whereW(Σ) = ∫
Σ

|H|2 dµ is the Willmore functional of Σ.

Notice that for surfaces inR3 functionsψ are sections of spinor bundles[13] and the
gauge transformation(17)shows that for surfacesR4 this is not necessarily a case.

It is derived fromProposition 1that, given a Riemann surfaceΣ, such bundlesE,E∨,
andEU and solutionsψ andϕ to the equationsDψ = 0 andD∨ϕ = 0, one may construct
an immersion of the universal covering ofΣ intoR4. The Gauss mapping of this immersion
descends throughΣ. Let us give a criterion for converting such an immersion into an
immersion of the surfaceΣ0.

Proposition 5. LetΣ be an oriented closed surface, let Σ̃ be its universal covering and let
(ψ, ϕ) define an immersion of Σ̃ into R4 via (1) and (2). Then such an immersion converts
into an immersion of Σ if and only if∫

Σ

ψ̄1ϕ̄1 dz̄ ∧ ω =
∫
Σ

ψ̄1ϕ2 dz̄ ∧ ω =
∫
Σ

ψ2ϕ̄1 dz̄ ∧ ω =
∫
Σ

ψ2ϕ2 dz̄ ∧ ω = 0

(18)

for any holomorphic differential ω on Σ.
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Proof. Letg ≥ 1 be the genus ofΣ. Then there is a basisα1, . . . , αg, β1,. . .,βg of 1-cycles
onΣ such thatΣ = Σ̃/Γ and the fundamental domain for the action ofΓ = π1(Σ) is a
domainΩ on Σ̃ whose boundary has the form

∂Ω = α1β1α
−1
1 β−1

1 , . . . , αgβgα
−1β−1

g .

Denote by dx1, . . . ,dx4 the closed 1-forms oñΣ induced by the immersion intoR4 and
denote byV 1, . . . , V 4 the period vectors

Vk =
(∫

α1

dxk, . . . ,
∫
αg

dxk,
∫
βk

dxk, . . . ,
∫
βg

dxk
)
, k = 1,2,3,4.

An immersion ofΣ̃ converts into an immersion ofΣ if and only if

V 1 = V 2 = V 3 = V 4 = 0.

Given a holomorphic formω onΣ, pull it back onto the universal covering̃Σ and compute
the integral

∫
∂Ω

xkω =
g∑
j=1

(∫
αj

ω

∫
βj

dxk −
∫
αj

dxk
∫
βj

ω

)
=

g∑
j=1

(
Vkj+g

∫
αj

ω − Vkj

∫
βj

ω

)

which is by the Stokes theorem equals

∫
∂Ω

xkω =
∫
Ω

xkz̄ dz̄ ∧ ω.

A Riemann surfaceΣ has a basisω1, . . . , ωg for holomorphic differentials normalized by
the condition∫

αj

ωk = δij.

In this event theβ-periods matrix

Bjk =
∫
βj

ωk

is symmetric with positive imaginary part: ImB > 0. This implies that the conditions

g∑
j=1

(
Vkj+g

∫
αj

ωl − Vkj

∫
βj

ωl

)
= 0, l = 1, . . . , g,
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for a vectorVk with real entries are satisfied if and only ifVk = 0. Therefore, an immersion
of Σ̃ converts into an immersion of a closed surfaceΣ if and only if

∫
Ω

xkz̄ dz̄ ∧ ω = 0

for anyk = 1, . . . ,4 and any holomorphic differentialω onΣ. It follows from (1) that that
is equivalent to the equalities(18). This proves the proposition. �

4. Deformations of tori via the Davey–Stewartson equations

Let us look whatTheorem 1gives us for tori.

Theorem 3. Let Σ be a torus in R4 which is conformally equivalent to C/Λ and z is a
conformal parameter.

Then there are vector functions ψ, ϕ and a function U such that

(1) ψ and ϕ give a Weierstrass representation of Σ;
(2) the potential U of this representation is Λ-periodic;
(3) such functions ψ, ϕ, and U are defined up to gauge transformations(

ψ1

ψ2

)
→
(

ehψ1

eh̄ψ2

)
,

(
ϕ1

ϕ2

)
→
(

e−hϕ1

e−h̄ϕ2

)
, U → Ueh̄−hU,

(19)

where

h(z) = a+ bz, Im (bγ) ∈ πZ, for all γ ∈ Λ.

Therefore, such representations are parameterized by aZ2 lattice formed by admissible
values of b.

Proof. By Theorem 1, given a Weierstrass representation of a torus (with a fixed conformal
parameter) the Dirac equations are satisfied if and only if

U = −eḡ−g−iθ(iθz sin η cosη+ ηz), ψ1 = eiθ+g cosη, ψ2 = eḡ sin η

whereg meets Eq.(16). The component of the Gauss mappingGψ = (eiθ cosη : sin η) is
Λ-periodic andU takes the formU = eḡ−gU0 where

U0 = iθz sin η cosη+ ηz
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is periodic with respect toΛ. By (16), gz̄ is periodic and a general solution to(16) takes the
form

g = h(z) + cz̄+ f (z, z̄),

whereh(z) is an arbitrary holomorphic function,f is some periodic function, and

c = −
∫
M

iθz̄ cos2 ηdx dy.

Hence,U is aΛ-periodic function if and only ifg = a+ bz+ cz̄ (modulo periodic func-
tions) and (¯g(z) − g(z)) ∈ 2πZ for z ∈ Λ. The latter conditions are easily resolved andb is
defined up tob′ such that (b′γ − b′γ) ∈ 2πZ for all γ ∈ Λ. This proves the theorem.�

Now let us look for the DS deformations of tori. Exactly in this case in difference with
high genera compact surfaces the constraints for defining additional potentialsv, a, b could
be globally resolved. As in[13] we are interested in two problems:

• when a deformation from the DS hierarchy deforms a torus into tori?
• when the “Willmore functional”

∫
Σ
uūdz ∧ dz̄ is preserved by such a deformation.

For that we have to resolve the constraint equations forv,w, andw′ carefully choosing
specific solutions.

We consider only the DS2 and DS3 equations since we do not know until recently a general
recursion procedure for writing down explicit formulas for higher equations. However, it
is a general point in the soliton theory that the first nontrivial equations in the hierarchy
usually resemble the main properties of higher equations.

Since we derive for tori that there is a representation with a double-periodic potential
we can look for solutions of the DS equations with such an initial data. In addition we have
to define such resolutions of constraints (i.e. the additional potentialsv, a, b) to obtain the
equations with double-periodic coefficients and, hence, double-periodic solutions.

We do not discuss the existence of a solution assuming that it exists which, in particular,
for short times follows from the Cauchy–Kovalevskaya theorem.

4.1. The DS2 deformation

We have

ψt = iA+
2 ψ, ϕt = −iA−

2 ϕ, vz̄ = (|u|2)z.

When we work with compact surfaces we have to resolve the constraint equation forv

globally. Moreover, for tori we would like to save the periodicity of the integrands of the
Weierstrass representation, i.e. terms which are of the formψ2ϕ2 or similar to it, we have
to have a periodic potentialv.
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This is quite easy: the constraint forv is uniquely resolved by an inversion of thē∂-
operator on a torus assuming that

∫
vdz ∧ dz̄ = 0. The reason is the same as for the mNV

deformation (see[13]): since the right hand-side (|u|2)z of the constraint equation is a
derivative of a periodic function its Fourier decomposition does not contain a non-zero term
and the∂̄-operator is inverted term by term of the Fourier decomposition. Thus, we have:

v = ∂̄−1∂(|u|2),
∫
Σ

vdz ∧ dz̄ = 0. (20)

Here and in the sequel we identifyΣ with a fundamental domain for the latticeΛ such that
the torus is conformally equivalent toC/Λ.

Theorem 4. The DS2 equation

ut = i(uzz + uz̄z̄ + 2(v+ v̄)u)

where v is defined by (20) induces a deformation of tori (with a fixed periodic potential of
their Weierstrass representations) into tori.

Proof. We have to prove that the closedness conditions(18) are preserved. We show that
only for one of them because for others the proofs are basically the same. There is one
dimensional family of holomorphic differential on a torus generated by dz. We have to
prove that

J =
∫
Σ

ψ2ϕ2 dz ∧ dz̄ = 0

implies thatJt = 0.
We have

ψ2t = i[(u∂ − uz)ψ1 + (∂̄2 + v̄)ψ2], ϕ2t = −i[(ū∂ − ūz)ϕ1 + (∂̄2 + v̄)ϕ2].

Substituting that into

Jt =
∫
Σ

(ψ2tϕ2 + ψ2ϕ2t)dz ∧ dz̄

(notice that the integrand is correctly defined as a function onΣ, i.e. it is double-periodic,
althoughψ2 andϕ2 are not periodic) we obtain

Jt = i

∫
Σ

[(uψ1z − uzψ1)ϕ2 + (ψ2z̄z̄ + v̄ψ2)ϕ2 − (ūϕ1z − ūzϕ1)ψ2

−(ϕ2z̄z̄ + v̄ϕ2)ψ2]dz ∧ dz̄.
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Integrating by parts some of terms and canceling terms repeated with different signs we
derive

Jt = i

∫
Σ

[(uψ1z − uzψ1)ϕ2 − (ūϕ1z − ūzϕ1)ψ2]dz ∧ dz̄.

Now an integration by parts implies that

Jt = i

∫
Σ

[uψ1zϕ2 + u(ψ1ϕ2)z − ūϕ1zψ2 − ū(ψ2ϕ1)z]dz ∧ dz̄

=
∫
Σ

[2(uϕ2)ψ1z + (uψ1)ϕ2z − 2(ūψ2)ϕ1z − (ūϕ1)ψ2z]dz ∧ dz̄.

By using the Dirac equations replace the terms in brackets to exclude the potentialsu and
ū from the integrand:

Jt = 2i
∫
Σ

(ϕ1z̄ψ1z − ϕ1zψ1z̄)dz ∧ dz̄.

An integration by parts impliesJt = 0 which proves the theorem.�

Remark that we never use in the proof thatJ = 0 for the initial torus. Therefore, we
proved more: the DS2 deformation preserves the translational periods of surfaces with
double-periodic Gauss mapping.

Since we proved that tori are preserved it is reasonable to speak about the conservation
laws for the DS deformations. We have

Theorem 5. The DS2 deformation of tori preserves the Willmore functional.

Proof. We have

d

dt

∫
Σ

|u|2 dz ∧ dz̄ =
∫
Σ

(utū+ uūt)dz ∧ dz̄ = i

∫
Σ

[ū(uzz + uz̄z̄ + 2(v+ v̄)u)

− u(ūzz+ūz̄z̄+2(v+ v̄)ū)]dz ∧ dz̄ = i

∫
Σ

(ūuzz−uūzz + ūuz̄z̄ − uūz̄z̄)dz ∧ dz̄.

By integrating by parts the last integral, we easily derive that

d

dt

∫
Σ

|u|2dz ∧ dz̄ = 0

which proves the theorem. �

Remark 1. By Proposition 2, there are two potentialsv1 andv2 which are coming into the
equation. We choose an additional constraintv = v1 = v̄2. Without this constraintTheorem
4 does not hold as one can see from its proof.
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In fact we assumed more, that
∫
vΣdz ∧ dz̄ vanishes. This was not important: if we put

v → v+ f (t) then the deformation reduces to a composition of the initial one and some
evolution tangent to a torus, i.e. this results in adding a diffeomorphism of a torus which
does not affect the geometric picture.

4.2. The DS3 deformation

For this deformation we have

ψt = A+
3 ψ, ϕt = A−

3 ϕ

and many constraints which we have to resolve. As in the case of the DS2 deformation we
put

vz̄ = (|u|2)z,
∫
Σ

vdz ∧ dz̄ = 0 (21)

and in addition we choosew andw′ as follows:

w = ∂∂̄−1(ūuz), w′ = ∂̄∂−1(ūuz̄). (22)

These functions satisfy the constraint equations(10)however they are very specific partic-
ular solutions to them.

Moreover, we have to resolve the constraint equations forw1 andw2 which are different
for A+ andA−. We put

w+
1 = w− vz, w+

2 = −w′, w−
1 = −w, w−

2 = w′ − v̄z̄,

v±1 = 2v, v±2 = 2v̄. (23)

The reasonings for these choices we shall explain later.

Theorem 6. The DS3 equation

ut = uzzz + uz̄z̄z̄ + 3(vuz + v̄uz̄) + 3(w+ w′)u

induces a deformation of tori (with fixed periodic potential of their Weierstrass representa-
tions) into tori.

Proof. We again demonstrate that only for one of the closedness conditions. Let us take
the same as in the proof ofTheorem 4. We have
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ψ2t = (−u∂2 + uz∂ − uzz − 3vu)ψ1 + (∂̄3 + 3v̄∂̄ + 3w′)ψ2,

ϕ2t = (−ū∂2 + ūz∂ − ūzz − 3vū)ϕ1 + (∂̄3 + 3v̄∂̄ − 3(w′ − v̄z̄))ϕ2.

Substitute that into

Jt =
∫
Σ

(ψ2tϕ2 + ψ2ϕ2t) dz ∧ dz̄.

An integration by parts shows that

∫
Σ

[(ψ2z̄z̄z̄ + 3v̄ψ2z̄)ϕ2 + (ϕ2z̄z̄z̄ + 3v̄ϕ2z̄ + 3v̄z̄ϕ2)ψ2] dz ∧ dz̄ = 0

and we are left to prove that∫
Σ

[(−uψ1zz + uzψ1z − (uzz + 3vu)ψ1)ϕ2

+ (−ūϕ1zz + ūzϕ1z − (ūzz + 3vū)ϕ1)ψ2] dz ∧ dz̄ = 0.

Let us rewrite the left-hand side of this formula as

Jt =
∫
Σ

[(−(uψ1)zz + 3uzψ1z − 3vuψ1)ϕ2 + (−(ūϕ1)zz + 3ūzϕ1z

− 3vūϕ1ψ2)] dz ∧ dz̄

which by the Dirac equationsDψ = D∨ϕ = 0, equals to

Jt =
∫
Σ

[(ψ2zzz+3uzψ1z)ϕ2 − 3vψ1ϕ1z̄ + (ϕ2zzz + 3ūzϕ1z)ψ2 − 3vψ1z̄ϕ1] dz ∧ dz̄

=
∫
Σ

(ψ2zzzϕ2+ψ2ϕ2zzz) dz ∧ dz̄+3
∫
Σ

(uzψ1zϕ2+ūzψ2ϕ1z−v(ψ1ϕ1)z̄) dz ∧ dz̄.

An integration by parts shows that the first summand vanishes and, by(21), we have

Jt = 3
∫
Σ

(uzψ1zϕ2 + ūzψ2ϕ1z + (|u|2)zψ1ϕ1) dz ∧ dz̄

= 3
∫
Σ

(uzψ1zϕ2 + ūzψ2ϕ1z + uzūψ1ϕ1 + ūzuψ1ϕ1) dz ∧ dz̄

= 3
∫
Σ

[uz(ψ1zϕ2 − ψ1ϕ2z) + ūz(ϕ1zψ2 − ϕ1ψ2z)] dz ∧ dz̄

= 3
∫
Σ

[u(ψ1ϕ2zz − ψ1zzϕ2) + ū(ϕ1ψ2zz − ϕ1zzψ2)] dz ∧ dz̄

= 3
∫
Σ

(−ψ2zϕ2zz − ψ1zzϕ1z̄ − ϕ2zψ2zz − ψ1z̄ϕ1zz) dz ∧ dz̄.
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Now by integrating by parts we easily derive from the last formula that

Jt = 0.

Analogous reasonings show that other closedness conditions(15)are also preserved by the
flow. This proves theorem. �

As in the case of the DS2 flow we actually show that the DS3 deformation preserves the
translational periods of surfaces with double-periodic Gauss mapping.

As in the case of the DS2 deformation the Willmore functional is preserved, i.e. the
following theorem holds.

Theorem 7. The DS3 deformation with the additional potentials of the form (21–23)
preserves the Willmore functional.

Proof. We have
d

dt

∫
Σ

|u|2 dz ∧ dz̄ =
∫
Σ

(utū+ uūt) dz ∧ dz̄ =
∫
Σ

[(uzzz + uz̄z̄z̄ + 3(vuz + v̄uz̄)

+ 3(w+ w′)u)ū+ u(ūzzz + ūz̄z̄z̄ + 3(v̄ūz̄ + vūz)

+ 3(w̄+ w̄′)ū)] dz ∧ dz̄ =
∫
Σ

[(uzzzū+ uūzzz) + (uz̄z̄z̄ū+ uūz̄z̄z̄)] dz ∧ dz̄

+ 3
∫
Σ

(v(|u|2)z + v̄(|u|2)z̄) dz ∧ dz̄+ 3
∫
Σ

(w+ w̄+ w′ + w̄′)|u|2 dz ∧ dz̄.

An integration by parts shows that the first integral vanishes, and, by(21), the second integral
equals to

3
∫
Σ

(vvz̄ + v̄v̄z) dz ∧ dz̄ = 0

(here we use that the functionv is double-periodic). We are left to prove that∫
Σ

(w+ w̄+ w′ + w̄′)|u|2 dz ∧ dz̄ = 0.

We have

w+ w̄′ = vz, w′ + w̄ = v̄z̄.

Therefore, the investigated integral is rewritten as∫
Σ

(vz + v̄z̄)|u|2 dz ∧ dz̄ = −
∫
Σ

(v(|u|2)z + v̄(|u|2)z̄) dz ∧ dz̄

= −
∫
Σ

(vvz̄ + v̄v̄z) dz ∧ dz̄ = 0.

This proves the theorem. �
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Remark 2. As for the DS2 deformation we choose the additional potentials carefully
to make the DS3 deformation geometric. For general potentials meeting the constraint
equations it is not the case. For instance, we may add any constantsc andc′ tow andw′ but
the proof ofTheorem 7shows that ifk = c + c′ + c̄ + c̄′ 
= 0 then the Willmore functional
is evolved as

Wt = 3kW.

and is not preserved.

The most interesting feature of the DS deformations is that they are defined only for
surfaces with fixed potentials of their Weierstrass representations. Indeed, for a torus we
may take another gauge-equivalent potential

u → u′ = eaz−āz̄u (24)

and apply the DS deformation for a torus with the potential. In this case the deformation
would be completely different geometrically. It is noticeable from the deformation of|u|2
which is, byProposition 1, is a geometric quantity.

Let us demonstrate that for the DS3 deformation. The additional potentials defined by
(21)–(23)are the same as foru but att = 0 the deformation of|u′|2 is different from the
deformation of|u|2 and it is as follows:

d|u′|2
dt

= d|u|2
dt

+ 6 Re [a2(uzū+ uūz) + a(uzzū− uūzz)].

Although the first additional term is simple and equals to

3

(
a2∂|u|2

∂z
+ ā2∂|u|2

∂z̄

)
,

i.e. could come from one-parametric diffeomorphism group of the surface, the second term
involves the second derivatives and does not have such a form.

We conclude that

• the DS deformations are correctly defined only for surfaces with fixed potentials of their
Weierstrass representations and for different choices of the potentials such deformations
are geometrically different.

By Theorem 3, for tori such deformations are parameterized by aZ2 lattice.
If we shall speak on local deformations then the gauge group is much larger (a gauge

transformation is determined by a holomorphic function) and local deformations would be
very different for different choices of gauge-equivalent potentials.
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5. The spectral curve

It is reasonable to define the spectral curve for a torus inR4 as the spectral curve of a
double-periodic operatorD coming in its Weierstrass representation.

Let us recall the definition of the spectral curve of a double-periodic Dirac operatorD
([15]).

For that consider all formal solutions to the equation

Dψ = 0

meeting in addition the following periodicity conditions:

ψ(z+ γj) = e2πi(k1 Reγj+k2Im γj)ψ(z) = µ(γj)ψ(z), j = 1,2.

wherez ∈ C andγ1, γ2 generate the periods latticeΛ ⊂ C. Such solutionsψ are called
Floquet eigenfunctions (on the zero level of energy), the quantitiesk1, k2 are called the
quasimomenta ofψ, and (µ1, µ2) = µ(γ1), µ(γ2) are the multipliers ofψ.

The quasimomenta satisfy some analytic relation (called in solid physics the dispersion
relation):

P(k1, k2) = 0

which defines a complex curveQ0 in C2 invariant with respect to translations

k → k + γ∗, γ∗ = (γ∗
1 , γ

∗
2) ∈ Λ∗,

whereΛ∗ ⊂ C = R2 ⊂ C2 is the dual lattice toΛ.
We say that the complex curveΓ = Q0/Λ

∗ is the spectral curve ofD (on the zero energy
level). This definition originates in the definition of such a curve for a two-dimensional
Schr̈odinger operator[3]. The mappingM : Γ → C

2 formed by the multipliersM =
(µ1, µ2) is called the multiplier mapping.

The spectral genus of a torus is defined as the geometric genus of the normalization of
Γ .

For tori in R3 it appears that such a curve together withM contains an important
information about the conformal geometry of a torus. Our conjecture confirmed in[6] reads
that the pair (Γ,M) is preserved by conformal transformations of the ambient spaceR

3

which map the torus intoR3. The discussion of other properties of the spectral curve can
be found in[16].

For tori inR4 the situation is slightly different: the curveΓ is defined up to biholomorphic
equivalences however the multiplier mappings depend on the choice of a potential: the gauge
transformation(24)acts onψ andM as follows:

ψ → e−azψ, (µ1, µ2) → (e−aγ1µ1,e
−aγ2µ2).
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This is rather reasonable. In the fundamental paper[11] by Novikov the spectral curve
of an operator with a potential deformed via some soliton equation was considered as a
conservation law itself for this equation. Since we show in Section4 that there are infinitely
many geometrically different soliton deformations of a torus inR4 described by the same
DS equation, these different curves are just the values of the same conservation law for
different solutions.
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